There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sqrt(1 - {t}^{2})}{sqrt(1 + {t}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(-t^{2} + 1)}{sqrt(t^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(-t^{2} + 1)}{sqrt(t^{2} + 1)}\right)}{dx}\\=&\frac{(0 + 0)*\frac{1}{2}}{(-t^{2} + 1)^{\frac{1}{2}}sqrt(t^{2} + 1)} + \frac{sqrt(-t^{2} + 1)*-(0 + 0)*\frac{1}{2}}{(t^{2} + 1)(t^{2} + 1)^{\frac{1}{2}}}\\=&\frac{0}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !