There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{cos(x)}^{sin(x)}}^{tan(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{cos(x)}^{sin(x)}}^{tan(x)}\right)}{dx}\\=&({{cos(x)}^{sin(x)}}^{tan(x)}((sec^{2}(x)(1))ln({cos(x)}^{sin(x)}) + \frac{(tan(x))(({cos(x)}^{sin(x)}((cos(x))ln(cos(x)) + \frac{(sin(x))(-sin(x))}{(cos(x))})))}{({cos(x)}^{sin(x)})}))\\=&{{cos(x)}^{sin(x)}}^{tan(x)}ln({cos(x)}^{sin(x)})sec^{2}(x) + {{cos(x)}^{sin(x)}}^{tan(x)}ln(cos(x))cos(x)tan(x) - \frac{{{cos(x)}^{sin(x)}}^{tan(x)}sin^{2}(x)tan(x)}{cos(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !