There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{50m{x}^{p}}{(k + {x}^{p})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{50m{x}^{p}}{(k + {x}^{p})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{50m{x}^{p}}{(k + {x}^{p})}\right)}{dx}\\=&50(\frac{-(0 + ({x}^{p}((0)ln(x) + \frac{(p)(1)}{(x)})))}{(k + {x}^{p})^{2}})m{x}^{p} + \frac{50m({x}^{p}((0)ln(x) + \frac{(p)(1)}{(x)}))}{(k + {x}^{p})}\\=&\frac{-50mp{x}^{(2p)}}{(k + {x}^{p})^{2}x} + \frac{50mp{x}^{p}}{(k + {x}^{p})x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !