There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2x + \frac{5}{(4sqrt(1 + \frac{{x}^{2}}{4}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x + \frac{\frac{5}{4}}{sqrt(\frac{1}{4}x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x + \frac{\frac{5}{4}}{sqrt(\frac{1}{4}x^{2} + 1)}\right)}{dx}\\=&2 + \frac{\frac{5}{4}*-(\frac{1}{4}*2x + 0)*\frac{1}{2}}{(\frac{1}{4}x^{2} + 1)(\frac{1}{4}x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-5x}{16(\frac{1}{4}x^{2} + 1)^{\frac{3}{2}}} + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !