There are 1 questions in this calculation: for each question, the 2 derivative of z is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(z - 1)}^{3}}{z}\ with\ respect\ to\ z:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = z^{2} - 3z - \frac{1}{z} + 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( z^{2} - 3z - \frac{1}{z} + 3\right)}{dz}\\=&2z - 3 - \frac{-1}{z^{2}} + 0\\=&2z + \frac{1}{z^{2}} - 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2z + \frac{1}{z^{2}} - 3\right)}{dz}\\=&2 + \frac{-2}{z^{3}} + 0\\=& - \frac{2}{z^{3}} + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !