Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ sec(x){tan(x)}^{2} + {sec(x)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = tan^{2}(x)sec(x) + sec^{3}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( tan^{2}(x)sec(x) + sec^{3}(x)\right)}{dx}\\=&2tan(x)sec^{2}(x)(1)sec(x) + tan^{2}(x)sec(x)tan(x) + 3sec^{3}(x)tan(x)\\=&5tan(x)sec^{3}(x) + tan^{3}(x)sec(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5tan(x)sec^{3}(x) + tan^{3}(x)sec(x)\right)}{dx}\\=&5sec^{2}(x)(1)sec^{3}(x) + 5tan(x)*3sec^{3}(x)tan(x) + 3tan^{2}(x)sec^{2}(x)(1)sec(x) + tan^{3}(x)sec(x)tan(x)\\=&5sec^{5}(x) + 18tan^{2}(x)sec^{3}(x) + tan^{4}(x)sec(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 5sec^{5}(x) + 18tan^{2}(x)sec^{3}(x) + tan^{4}(x)sec(x)\right)}{dx}\\=&5*5sec^{5}(x)tan(x) + 18*2tan(x)sec^{2}(x)(1)sec^{3}(x) + 18tan^{2}(x)*3sec^{3}(x)tan(x) + 4tan^{3}(x)sec^{2}(x)(1)sec(x) + tan^{4}(x)sec(x)tan(x)\\=&61tan(x)sec^{5}(x) + 58tan^{3}(x)sec^{3}(x) + tan^{5}(x)sec(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return