There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (6 - 6cos(\frac{6x}{5} - \frac{π}{5}) + sqrt(3500))cos(x) - 10sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 6cos(\frac{6}{5}x - \frac{1}{5}π)cos(x) + cos(x)sqrt(3500) + 6cos(x) - 10sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 6cos(\frac{6}{5}x - \frac{1}{5}π)cos(x) + cos(x)sqrt(3500) + 6cos(x) - 10sin(x)\right)}{dx}\\=& - 6*-sin(\frac{6}{5}x - \frac{1}{5}π)(\frac{6}{5} + 0)cos(x) - 6cos(\frac{6}{5}x - \frac{1}{5}π)*-sin(x) + -sin(x)sqrt(3500) + cos(x)*0*\frac{1}{2}*3500^{\frac{1}{2}} + 6*-sin(x) - 10cos(x)\\=&\frac{36sin(\frac{6}{5}x - \frac{1}{5}π)cos(x)}{5} + 6sin(x)cos(\frac{6}{5}x - \frac{1}{5}π) - sin(x)sqrt(3500) - 6sin(x) - 10cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !