There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(3{x}^{2} + 4x - 5)}^{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (3x^{2} + 4x - 5)^{6}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (3x^{2} + 4x - 5)^{6}\right)}{dx}\\=&(6(3x^{2} + 4x - 5)^{5}(3*2x + 4 + 0))\\=&8748x^{11} + 64152x^{10} + 121500x^{9} - 126360x^{8} - 517320x^{7} + 53424x^{6} + 872376x^{5} - 63600x^{4} - 718500x^{3} + 195000x^{2} + 187500x - 75000\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !