There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2sin(x) + (\frac{1}{3})sin(3)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2sin(x) + \frac{1}{3}xsin(3)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2sin(x) + \frac{1}{3}xsin(3)\right)}{dx}\\=&2cos(x) + \frac{1}{3}sin(3) + \frac{1}{3}xcos(3)*0\\=&2cos(x) + \frac{sin(3)}{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2cos(x) + \frac{sin(3)}{3}\right)}{dx}\\=&2*-sin(x) + \frac{cos(3)*0}{3}\\=&-2sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !