There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{ln(1 - {x}^{2})}{(1 + {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(-x^{2} + 1)}{(x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(-x^{2} + 1)}{(x^{2} + 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})ln(-x^{2} + 1) + \frac{(-2x + 0)}{(x^{2} + 1)(-x^{2} + 1)}\\=&\frac{-2xln(-x^{2} + 1)}{(x^{2} + 1)^{2}} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2xln(-x^{2} + 1)}{(x^{2} + 1)^{2}} - \frac{2x}{(x^{2} + 1)(-x^{2} + 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} + 1)^{3}})xln(-x^{2} + 1) - \frac{2ln(-x^{2} + 1)}{(x^{2} + 1)^{2}} - \frac{2x(-2x + 0)}{(x^{2} + 1)^{2}(-x^{2} + 1)} - \frac{2(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x}{(-x^{2} + 1)} - \frac{2(\frac{-(-2x + 0)}{(-x^{2} + 1)^{2}})x}{(x^{2} + 1)} - \frac{2}{(x^{2} + 1)(-x^{2} + 1)}\\=&\frac{8x^{2}ln(-x^{2} + 1)}{(x^{2} + 1)^{3}} - \frac{2ln(-x^{2} + 1)}{(x^{2} + 1)^{2}} + \frac{8x^{2}}{(x^{2} + 1)^{2}(-x^{2} + 1)} - \frac{4x^{2}}{(x^{2} + 1)(-x^{2} + 1)^{2}} - \frac{2}{(x^{2} + 1)(-x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !