There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ cos(sqrt({x}^{2} + x)) - x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos(sqrt(x^{2} + x)) - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(sqrt(x^{2} + x)) - x\right)}{dx}\\=&\frac{-sin(sqrt(x^{2} + x))(2x + 1)*\frac{1}{2}}{(x^{2} + x)^{\frac{1}{2}}} - 1\\=&\frac{-xsin(sqrt(x^{2} + x))}{(x^{2} + x)^{\frac{1}{2}}} - \frac{sin(sqrt(x^{2} + x))}{2(x^{2} + x)^{\frac{1}{2}}} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !