There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{4}{\frac{1}{(1 + x)}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{4}}{(x + 1)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{4}}{(x + 1)^{3}}\right)}{dx}\\=&(\frac{-3(1 + 0)}{(x + 1)^{4}})x^{4} + \frac{4x^{3}}{(x + 1)^{3}}\\=&\frac{-3x^{4}}{(x + 1)^{4}} + \frac{4x^{3}}{(x + 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !