Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(x{({x}^{2} + {y}^{2})}^{\frac{-1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arccos(\frac{x}{(x^{2} + y^{2})^{\frac{1}{2}}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(\frac{x}{(x^{2} + y^{2})^{\frac{1}{2}}})\right)}{dx}\\=&(\frac{-((\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + y^{2})^{\frac{3}{2}}})x + \frac{1}{(x^{2} + y^{2})^{\frac{1}{2}}})}{((1 - (\frac{x}{(x^{2} + y^{2})^{\frac{1}{2}}})^{2})^{\frac{1}{2}})})\\=&\frac{x^{2}}{(\frac{-x^{2}}{(x^{2} + y^{2})} + 1)^{\frac{1}{2}}(x^{2} + y^{2})^{\frac{3}{2}}} - \frac{1}{(\frac{-x^{2}}{(x^{2} + y^{2})} + 1)^{\frac{1}{2}}(x^{2} + y^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return