Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{\frac{1}{e}}^{x} - (2 - x){\frac{1}{e}}^{(2 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{\frac{1}{e}}^{x} - 2{\frac{1}{e}}^{(-x + 2)} + x{\frac{1}{e}}^{(-x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{\frac{1}{e}}^{x} - 2{\frac{1}{e}}^{(-x + 2)} + x{\frac{1}{e}}^{(-x + 2)}\right)}{dx}\\=&{\frac{1}{e}}^{x} + x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - 2({\frac{1}{e}}^{(-x + 2)}((-1 + 0)ln(\frac{1}{e}) + \frac{(-x + 2)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) + {\frac{1}{e}}^{(-x + 2)} + x({\frac{1}{e}}^{(-x + 2)}((-1 + 0)ln(\frac{1}{e}) + \frac{(-x + 2)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))\\=&{\frac{1}{e}}^{x} - x{\frac{1}{e}}^{x} - {\frac{1}{e}}^{(-x + 2)} + x{\frac{1}{e}}^{(-x + 2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return