Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 8 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 8th\ derivative\ of\ function\ e^{sin({x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{sin(x^{2})}\\\\ &\color{blue}{The\ 8th\ derivative\ of\ function:} \\=&1680e^{sin(x^{2})}cos^{4}(x^{2}) + 13440x^{2}e^{sin(x^{2})}cos^{5}(x^{2}) - 134400x^{2}e^{sin(x^{2})}sin(x^{2})cos^{3}(x^{2}) - 10080e^{sin(x^{2})}sin(x^{2})cos^{2}(x^{2}) - 201600x^{4}e^{sin(x^{2})}sin(x^{2})cos^{4}(x^{2}) - 134400x^{2}e^{sin(x^{2})}cos^{3}(x^{2}) + 201600x^{2}e^{sin(x^{2})}sin^{2}(x^{2})cos(x^{2}) + 13440x^{4}e^{sin(x^{2})}cos^{6}(x^{2}) - 7168x^{8}e^{sin(x^{2})}sin(x^{2})cos^{6}(x^{2}) + 604800x^{4}e^{sin(x^{2})}sin^{2}(x^{2})cos^{2}(x^{2}) - 268800x^{4}e^{sin(x^{2})}cos^{4}(x^{2}) - 75264x^{6}e^{sin(x^{2})}sin(x^{2})cos^{5}(x^{2}) + 1008000x^{4}e^{sin(x^{2})}sin(x^{2})cos^{2}(x^{2}) - 14336x^{8}e^{sin(x^{2})}cos^{6}(x^{2}) + 53760x^{8}e^{sin(x^{2})}sin^{2}(x^{2})cos^{4}(x^{2}) + 161280x^{8}e^{sin(x^{2})}sin(x^{2})cos^{4}(x^{2}) + 376320x^{6}e^{sin(x^{2})}sin^{2}(x^{2})cos^{3}(x^{2}) - 6720e^{sin(x^{2})}cos^{2}(x^{2}) - 125440x^{6}e^{sin(x^{2})}cos^{5}(x^{2}) - 107520x^{8}e^{sin(x^{2})}sin^{3}(x^{2})cos^{2}(x^{2}) + 878080x^{6}e^{sin(x^{2})}sin(x^{2})cos^{3}(x^{2}) - 322560x^{8}e^{sin(x^{2})}sin^{2}(x^{2})cos^{2}(x^{2}) + 86016x^{8}e^{sin(x^{2})}cos^{4}(x^{2}) - 376320x^{6}e^{sin(x^{2})}sin^{3}(x^{2})cos(x^{2}) - 752640x^{6}e^{sin(x^{2})}sin^{2}(x^{2})cos(x^{2}) - 193536x^{8}e^{sin(x^{2})}sin(x^{2})cos^{2}(x^{2}) + 201600x^{2}e^{sin(x^{2})}sin(x^{2})cos(x^{2}) + 326144x^{6}e^{sin(x^{2})}cos^{3}(x^{2}) - 225792x^{6}e^{sin(x^{2})}sin(x^{2})cos(x^{2}) + 3584x^{6}e^{sin(x^{2})}cos^{7}(x^{2}) + 26880x^{8}e^{sin(x^{2})}sin^{4}(x^{2}) + 215040x^{4}e^{sin(x^{2})}cos^{2}(x^{2}) - 201600x^{4}e^{sin(x^{2})}sin^{2}(x^{2}) + 53760x^{8}e^{sin(x^{2})}sin^{3}(x^{2}) - 201600x^{4}e^{sin(x^{2})}sin^{3}(x^{2}) - 16384x^{8}e^{sin(x^{2})}cos^{2}(x^{2}) + 16128x^{8}e^{sin(x^{2})}sin^{2}(x^{2}) + 5040e^{sin(x^{2})}sin^{2}(x^{2}) + 256x^{8}e^{sin(x^{2})}cos^{8}(x^{2}) + 1680e^{sin(x^{2})}sin(x^{2}) + 13440x^{2}e^{sin(x^{2})}cos(x^{2}) - 13440x^{4}e^{sin(x^{2})}sin(x^{2}) - 3584x^{6}e^{sin(x^{2})}cos(x^{2}) + 256x^{8}e^{sin(x^{2})}sin(x^{2})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return