There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(x + 1)}^{(\frac{2}{3})})}{(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(x + 1)^{\frac{2}{3}}}{(x - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(x + 1)^{\frac{2}{3}}}{(x - 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 1)^{2}})(x + 1)^{\frac{2}{3}} + \frac{(\frac{\frac{2}{3}(1 + 0)}{(x + 1)^{\frac{1}{3}}})}{(x - 1)}\\=&\frac{-(x + 1)^{\frac{2}{3}}}{(x - 1)^{2}} + \frac{2}{3(x + 1)^{\frac{1}{3}}(x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !