There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{3}}{(8 - {x}^{3} - 2{x}^{2} - 4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}}{(-x^{3} - 2x^{2} - 4x + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}}{(-x^{3} - 2x^{2} - 4x + 8)}\right)}{dx}\\=&(\frac{-(-3x^{2} - 2*2x - 4 + 0)}{(-x^{3} - 2x^{2} - 4x + 8)^{2}})x^{3} + \frac{3x^{2}}{(-x^{3} - 2x^{2} - 4x + 8)}\\=&\frac{3x^{5}}{(-x^{3} - 2x^{2} - 4x + 8)^{2}} + \frac{4x^{4}}{(-x^{3} - 2x^{2} - 4x + 8)^{2}} + \frac{4x^{3}}{(-x^{3} - 2x^{2} - 4x + 8)^{2}} + \frac{3x^{2}}{(-x^{3} - 2x^{2} - 4x + 8)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !