There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(\frac{-1}{({x}^{3} + 1)})} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(\frac{-1}{(x^{3} + 1)})} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{-1}{(x^{3} + 1)})} + 1\right)}{dx}\\=&({e}^{(\frac{-1}{(x^{3} + 1)})}((-(\frac{-(3x^{2} + 0)}{(x^{3} + 1)^{2}}))ln(e) + \frac{(\frac{-1}{(x^{3} + 1)})(0)}{(e)})) + 0\\=&\frac{3x^{2}{e}^{(\frac{-1}{(x^{3} + 1)})}}{(x^{3} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !