Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}(\frac{arctan(a)}{x} - \frac{arctan(a)}{(x + 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarctan(a) - \frac{x^{2}arctan(a)}{(x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarctan(a) - \frac{x^{2}arctan(a)}{(x + 1)}\right)}{dx}\\=&arctan(a) + x(\frac{(0)}{(1 + (a)^{2})}) - (\frac{-(1 + 0)}{(x + 1)^{2}})x^{2}arctan(a) - \frac{2xarctan(a)}{(x + 1)} - \frac{x^{2}(\frac{(0)}{(1 + (a)^{2})})}{(x + 1)}\\=&arctan(a) - \frac{2xarctan(a)}{(x + 1)} + \frac{x^{2}arctan(a)}{(x + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return