Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -plog_{2}^{p} - (1 - p)log_{2}^{1 - p}\ with\ respect\ to\ p:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -plog_{2}^{p} - log_{2}^{-p + 1} + plog_{2}^{-p + 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -plog_{2}^{p} - log_{2}^{-p + 1} + plog_{2}^{-p + 1}\right)}{dp}\\=&-log_{2}^{p} - p(\frac{(\frac{(1)}{(p)} - \frac{(0)log_{2}^{p}}{(2)})}{(ln(2))}) - (\frac{(\frac{(-1 + 0)}{(-p + 1)} - \frac{(0)log_{2}^{-p + 1}}{(2)})}{(ln(2))}) + log_{2}^{-p + 1} + p(\frac{(\frac{(-1 + 0)}{(-p + 1)} - \frac{(0)log_{2}^{-p + 1}}{(2)})}{(ln(2))})\\=&-log_{2}^{p} - \frac{1}{ln(2)} + \frac{1}{(-p + 1)ln(2)} + log_{2}^{-p + 1} - \frac{p}{(-p + 1)ln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return