There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{2x}{3})log_{2}^{\frac{2x}{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{3}xlog_{2}^{\frac{2}{3}x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{3}xlog_{2}^{\frac{2}{3}x}\right)}{dx}\\=&\frac{2}{3}log_{2}^{\frac{2}{3}x} + \frac{2}{3}x(\frac{(\frac{(\frac{2}{3})}{(\frac{2}{3}x)} - \frac{(0)log_{2}^{\frac{2}{3}x}}{(2)})}{(ln(2))})\\=&\frac{2log_{2}^{\frac{2}{3}x}}{3} + \frac{2}{3ln(2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !