There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sin(2)x}{sin(3x + 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xsin(2)}{sin(3x + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xsin(2)}{sin(3x + 4)}\right)}{dx}\\=&\frac{sin(2)}{sin(3x + 4)} + \frac{xcos(2)*0}{sin(3x + 4)} + \frac{xsin(2)*-cos(3x + 4)(3 + 0)}{sin^{2}(3x + 4)}\\=&\frac{sin(2)}{sin(3x + 4)} - \frac{3xsin(2)cos(3x + 4)}{sin^{2}(3x + 4)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !