There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{xxx(1 + x)(1 + x)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}x^{3} + \frac{1}{4}x^{4} + \frac{1}{2}x^{5}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x^{3} + \frac{1}{4}x^{4} + \frac{1}{2}x^{5}\right)}{dx}\\=&\frac{1}{2}*3x^{2} + \frac{1}{4}*4x^{3} + \frac{1}{2}*5x^{4}\\=&\frac{3x^{2}}{2} + x^{3} + \frac{5x^{4}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !