Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(8 - 4x)}{(4x - {x}^{2})} + ln(\frac{x}{4} - x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{4x}{(4x - x^{2})} + \frac{8}{(4x - x^{2})} + ln(\frac{-3}{4}x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{4x}{(4x - x^{2})} + \frac{8}{(4x - x^{2})} + ln(\frac{-3}{4}x)\right)}{dx}\\=& - 4(\frac{-(4 - 2x)}{(4x - x^{2})^{2}})x - \frac{4}{(4x - x^{2})} + 8(\frac{-(4 - 2x)}{(4x - x^{2})^{2}}) + \frac{\frac{-3}{4}}{(\frac{-3}{4}x)}\\=&\frac{-8x^{2}}{(4x - x^{2})^{2}} + \frac{32x}{(4x - x^{2})^{2}} - \frac{4}{(4x - x^{2})} - \frac{32}{(4x - x^{2})^{2}} + \frac{1}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return