Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(-4x)} + cos(4x + 2)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(-4x)} + cos(4x + 2)\right)}{dx}\\=&({e}^{(-4x)}((-4)ln(e) + \frac{(-4x)(0)}{(e)})) + -sin(4x + 2)(4 + 0)\\=&-4{e}^{(-4x)} - 4sin(4x + 2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -4{e}^{(-4x)} - 4sin(4x + 2)\right)}{dx}\\=&-4({e}^{(-4x)}((-4)ln(e) + \frac{(-4x)(0)}{(e)})) - 4cos(4x + 2)(4 + 0)\\=&16{e}^{(-4x)} - 16cos(4x + 2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return