There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(-58{x}^{2} + 4x - 15)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(-58x^{2} + 4x - 15)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(-58x^{2} + 4x - 15)}\right)}{dx}\\=&({e}^{(-58x^{2} + 4x - 15)}((-58*2x + 4 + 0)ln(e) + \frac{(-58x^{2} + 4x - 15)(0)}{(e)}))\\=&-116x{e}^{(-58x^{2} + 4x - 15)} + 4{e}^{(-58x^{2} + 4x - 15)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !