There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(-36{x}^{2} - 80x - 27)}{(-78x + 7)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-36x^{2}}{(-78x + 7)} - \frac{80x}{(-78x + 7)} - \frac{27}{(-78x + 7)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-36x^{2}}{(-78x + 7)} - \frac{80x}{(-78x + 7)} - \frac{27}{(-78x + 7)}\right)}{dx}\\=&-36(\frac{-(-78 + 0)}{(-78x + 7)^{2}})x^{2} - \frac{36*2x}{(-78x + 7)} - 80(\frac{-(-78 + 0)}{(-78x + 7)^{2}})x - \frac{80}{(-78x + 7)} - 27(\frac{-(-78 + 0)}{(-78x + 7)^{2}})\\=&\frac{-2808x^{2}}{(-78x + 7)^{2}} - \frac{72x}{(-78x + 7)} - \frac{6240x}{(-78x + 7)^{2}} - \frac{2106}{(-78x + 7)^{2}} - \frac{80}{(-78x + 7)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !