There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -79{x}^{3} - 26{x}^{2} - 88 + {e}^{(-3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -79x^{3} - 26x^{2} + {e}^{(-3x)} - 88\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -79x^{3} - 26x^{2} + {e}^{(-3x)} - 88\right)}{dx}\\=&-79*3x^{2} - 26*2x + ({e}^{(-3x)}((-3)ln(e) + \frac{(-3x)(0)}{(e)})) + 0\\=&-237x^{2} - 52x - 3{e}^{(-3x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !