There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (4x*2 - 4)(2x + 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 16x^{2} + 32x - 20\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 16x^{2} + 32x - 20\right)}{dx}\\=&16*2x + 32 + 0\\=&32x + 32\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 32x + 32\right)}{dx}\\=&32 + 0\\=&32\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !