Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{3} - 8)}{(8 + {x}^{-4})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}}{(\frac{1}{x^{4}} + 8)} - \frac{8}{(\frac{1}{x^{4}} + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}}{(\frac{1}{x^{4}} + 8)} - \frac{8}{(\frac{1}{x^{4}} + 8)}\right)}{dx}\\=&(\frac{-(\frac{-4}{x^{5}} + 0)}{(\frac{1}{x^{4}} + 8)^{2}})x^{3} + \frac{3x^{2}}{(\frac{1}{x^{4}} + 8)} - 8(\frac{-(\frac{-4}{x^{5}} + 0)}{(\frac{1}{x^{4}} + 8)^{2}})\\=&\frac{4}{(\frac{1}{x^{4}} + 8)^{2}x^{2}} + \frac{3x^{2}}{(\frac{1}{x^{4}} + 8)} - \frac{32}{(\frac{1}{x^{4}} + 8)^{2}x^{5}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return