There are 1 questions in this calculation: for each question, the 1 derivative of R is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 13689R{\frac{1}{(37 + R)}}^{2}\ with\ respect\ to\ R:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{13689R}{(R + 37)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{13689R}{(R + 37)^{2}}\right)}{dR}\\=&13689(\frac{-2(1 + 0)}{(R + 37)^{3}})R + \frac{13689}{(R + 37)^{2}}\\=&\frac{-27378R}{(R + 37)^{3}} + \frac{13689}{(R + 37)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !