Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(-70{x}^{2} - 49x + 32)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-70x^{2} - 49x + 32)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-70x^{2} - 49x + 32)\right)}{dx}\\=&\frac{(-70*2x - 49 + 0)}{(-70x^{2} - 49x + 32)}\\=&\frac{-140x}{(-70x^{2} - 49x + 32)} - \frac{49}{(-70x^{2} - 49x + 32)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-140x}{(-70x^{2} - 49x + 32)} - \frac{49}{(-70x^{2} - 49x + 32)}\right)}{dx}\\=&-140(\frac{-(-70*2x - 49 + 0)}{(-70x^{2} - 49x + 32)^{2}})x - \frac{140}{(-70x^{2} - 49x + 32)} - 49(\frac{-(-70*2x - 49 + 0)}{(-70x^{2} - 49x + 32)^{2}})\\=&\frac{-19600x^{2}}{(-70x^{2} - 49x + 32)^{2}} - \frac{13720x}{(-70x^{2} - 49x + 32)^{2}} - \frac{140}{(-70x^{2} - 49x + 32)} - \frac{2401}{(-70x^{2} - 49x + 32)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return