There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ xsin((\frac{π}{4}) + ln(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(\frac{1}{4}π + ln(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(\frac{1}{4}π + ln(x))\right)}{dx}\\=&sin(\frac{1}{4}π + ln(x)) + xcos(\frac{1}{4}π + ln(x))(0 + \frac{1}{(x)})\\=&sin(\frac{1}{4}π + ln(x)) + cos(\frac{1}{4}π + ln(x))\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(\frac{1}{4}π + ln(x)) + cos(\frac{1}{4}π + ln(x))\right)}{dx}\\=&cos(\frac{1}{4}π + ln(x))(0 + \frac{1}{(x)}) + -sin(\frac{1}{4}π + ln(x))(0 + \frac{1}{(x)})\\=&\frac{cos(\frac{1}{4}π + ln(x))}{x} - \frac{sin(\frac{1}{4}π + ln(x))}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !