There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{x})}{x} + (ln(x) + 1)ln(x){x}^{x} + (ln(x) + 1){x}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{x}}{x} + {x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + {x}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{x}}{x} + {x}^{x}ln^{2}(x) + 2{x}^{x}ln(x) + {x}^{x}\right)}{dx}\\=&\frac{-{x}^{x}}{x^{2}} + \frac{({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))}{x} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln^{2}(x) + \frac{{x}^{x}*2ln(x)}{(x)} + 2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))ln(x) + \frac{2{x}^{x}}{(x)} + ({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&\frac{3{x}^{x}ln(x)}{x} + \frac{3{x}^{x}}{x} + {x}^{x}ln^{3}(x) + 3{x}^{x}ln^{2}(x) - \frac{{x}^{x}}{x^{2}} + 3{x}^{x}ln(x) + {x}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !