There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{y}{(y + sqrt(({x}^{2})({y}^{2})))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{y}{(y + sqrt(y^{2}x^{2}))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{y}{(y + sqrt(y^{2}x^{2}))}\right)}{dx}\\=&(\frac{-(0 + \frac{y^{2}*2x*\frac{1}{2}}{(y^{2}x^{2})^{\frac{1}{2}}})}{(y + sqrt(y^{2}x^{2}))^{2}})y + 0\\=&\frac{-y^{2}}{(y + sqrt(y^{2}x^{2}))^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !