There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(\frac{1}{(x + sqrt({x}^{2} - 1))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{1}{(x + sqrt(x^{2} - 1))})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{(x + sqrt(x^{2} - 1))})\right)}{dx}\\=&\frac{(\frac{-(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} - 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} - 1))^{2}})}{(\frac{1}{(x + sqrt(x^{2} - 1))})}\\=& - \frac{x}{(x + sqrt(x^{2} - 1))(x^{2} - 1)^{\frac{1}{2}}} - \frac{1}{(x + sqrt(x^{2} - 1))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !