There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (15 - x){(\frac{7}{6})}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 15 * {\frac{7}{6}}^{x} - x{\frac{7}{6}}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 15 * {\frac{7}{6}}^{x} - x{\frac{7}{6}}^{x}\right)}{dx}\\=&15({\frac{7}{6}}^{x}((1)ln(\frac{7}{6}) + \frac{(x)(0)}{(\frac{7}{6})})) - {\frac{7}{6}}^{x} - x({\frac{7}{6}}^{x}((1)ln(\frac{7}{6}) + \frac{(x)(0)}{(\frac{7}{6})}))\\=&15 * {\frac{7}{6}}^{x}ln(\frac{7}{6}) - {\frac{7}{6}}^{x} - x{\frac{7}{6}}^{x}ln(\frac{7}{6})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !