There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(ax)}(cos(bx)a + bsin(bx))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{e}^{(ax)}cos(bx) + b{e}^{(ax)}sin(bx)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{e}^{(ax)}cos(bx) + b{e}^{(ax)}sin(bx)\right)}{dx}\\=&a({e}^{(ax)}((a)ln(e) + \frac{(ax)(0)}{(e)}))cos(bx) + a{e}^{(ax)}*-sin(bx)b + b({e}^{(ax)}((a)ln(e) + \frac{(ax)(0)}{(e)}))sin(bx) + b{e}^{(ax)}cos(bx)b\\=&a^{2}{e}^{(ax)}cos(bx) + b^{2}{e}^{(ax)}cos(bx)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !