There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3{x}^{3}{\frac{1}{(4 - 4x)}}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x^{3}}{(-4x + 4)^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x^{3}}{(-4x + 4)^{5}}\right)}{dx}\\=&3(\frac{-5(-4 + 0)}{(-4x + 4)^{6}})x^{3} + \frac{3*3x^{2}}{(-4x + 4)^{5}}\\=&\frac{60x^{3}}{(-4x + 4)^{6}} + \frac{9x^{2}}{(-4x + 4)^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !