There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sqrt(2)x - {x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsqrt(2) - x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsqrt(2) - x^{2}\right)}{dx}\\=&sqrt(2) + x*0*\frac{1}{2}*2^{\frac{1}{2}} - 2x\\=&sqrt(2) - 2x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sqrt(2) - 2x\right)}{dx}\\=&0*\frac{1}{2}*2^{\frac{1}{2}} - 2\\=& - 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !