Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ xsin(x){e}^{cos(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{cos(x)}sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{cos(x)}sin(x)\right)}{dx}\\=&{e}^{cos(x)}sin(x) + x({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin(x) + x{e}^{cos(x)}cos(x)\\=&{e}^{cos(x)}sin(x) - x{e}^{cos(x)}sin^{2}(x) + x{e}^{cos(x)}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{cos(x)}sin(x) - x{e}^{cos(x)}sin^{2}(x) + x{e}^{cos(x)}cos(x)\right)}{dx}\\=&({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin(x) + {e}^{cos(x)}cos(x) - {e}^{cos(x)}sin^{2}(x) - x({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin^{2}(x) - x{e}^{cos(x)}*2sin(x)cos(x) + {e}^{cos(x)}cos(x) + x({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))cos(x) + x{e}^{cos(x)}*-sin(x)\\=&-2{e}^{cos(x)}sin^{2}(x) + 2{e}^{cos(x)}cos(x) - 3x{e}^{cos(x)}sin(x)cos(x) + x{e}^{cos(x)}sin^{3}(x) - x{e}^{cos(x)}sin(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -2{e}^{cos(x)}sin^{2}(x) + 2{e}^{cos(x)}cos(x) - 3x{e}^{cos(x)}sin(x)cos(x) + x{e}^{cos(x)}sin^{3}(x) - x{e}^{cos(x)}sin(x)\right)}{dx}\\=&-2({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin^{2}(x) - 2{e}^{cos(x)}*2sin(x)cos(x) + 2({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))cos(x) + 2{e}^{cos(x)}*-sin(x) - 3{e}^{cos(x)}sin(x)cos(x) - 3x({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin(x)cos(x) - 3x{e}^{cos(x)}cos(x)cos(x) - 3x{e}^{cos(x)}sin(x)*-sin(x) + {e}^{cos(x)}sin^{3}(x) + x({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin^{3}(x) + x{e}^{cos(x)}*3sin^{2}(x)cos(x) - {e}^{cos(x)}sin(x) - x({e}^{cos(x)}((-sin(x))ln(e) + \frac{(cos(x))(0)}{(e)}))sin(x) - x{e}^{cos(x)}cos(x)\\=& - 9{e}^{cos(x)}sin(x)cos(x) + 3{e}^{cos(x)}sin^{3}(x) - 3{e}^{cos(x)}sin(x) + 6x{e}^{cos(x)}sin^{2}(x)cos(x) - 3x{e}^{cos(x)}cos^{2}(x) - x{e}^{cos(x)}sin^{4}(x) + 4x{e}^{cos(x)}sin^{2}(x) - x{e}^{cos(x)}cos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return