There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{3} - {x}^{\frac{1}{3}}){7}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}{7}^{x} - x^{\frac{1}{3}}{7}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}{7}^{x} - x^{\frac{1}{3}}{7}^{x}\right)}{dx}\\=&3x^{2}{7}^{x} + x^{3}({7}^{x}((1)ln(7) + \frac{(x)(0)}{(7)})) - \frac{\frac{1}{3} * {7}^{x}}{x^{\frac{2}{3}}} - x^{\frac{1}{3}}({7}^{x}((1)ln(7) + \frac{(x)(0)}{(7)}))\\=&x^{3}{7}^{x}ln(7) - x^{\frac{1}{3}}{7}^{x}ln(7) - \frac{{7}^{x}}{3x^{\frac{2}{3}}} + 3x^{2}{7}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !