There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (ln(69)){e}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}ln(69)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}ln(69)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(69) + \frac{{e}^{x}*0}{(69)}\\=&{e}^{x}ln(69)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !