There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{1}{2}{(1 - x)}^{(\frac{-2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}}{(-x + 1)^{\frac{2}{3}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}}{(-x + 1)^{\frac{2}{3}}}\right)}{dx}\\=&\frac{1}{2}(\frac{\frac{-2}{3}(-1 + 0)}{(-x + 1)^{\frac{5}{3}}})\\=&\frac{1}{3(-x + 1)^{\frac{5}{3}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{3(-x + 1)^{\frac{5}{3}}}\right)}{dx}\\=&\frac{(\frac{\frac{-5}{3}(-1 + 0)}{(-x + 1)^{\frac{8}{3}}})}{3}\\=&\frac{5}{9(-x + 1)^{\frac{8}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !