Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (arctan(sqrt(e^{-arctan(\frac{1}{sqrt(\frac{esqrt(e)}{2})})})))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(sqrt(e^{-arctan(\frac{1}{sqrt(\frac{1}{2}esqrt(e))})}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(sqrt(e^{-arctan(\frac{1}{sqrt(\frac{1}{2}esqrt(e))})}))\right)}{dx}\\=&(\frac{(\frac{e^{-arctan(\frac{1}{sqrt(\frac{1}{2}esqrt(e))})}*-(\frac{(\frac{-(\frac{1}{2}*0sqrt(e) + \frac{\frac{1}{2}e*0*\frac{1}{2}}{(e)^{\frac{1}{2}}})*\frac{1}{2}}{(\frac{1}{2}esqrt(e))(\frac{1}{2}esqrt(e))^{\frac{1}{2}}})}{(1 + (\frac{1}{sqrt(\frac{1}{2}esqrt(e))})^{2})})*\frac{1}{2}}{(e^{-arctan(\frac{1}{sqrt(\frac{1}{2}esqrt(e))})})^{\frac{1}{2}}})}{(1 + (sqrt(e^{-arctan(\frac{1}{sqrt(\frac{1}{2}esqrt(e))})}))^{2})})\\=&\frac{0}{4}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return