Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(2 - 9{x}^{2} + 9{x}^{-2} - 9{x}^{-4} + 1.68{x}^{-6} - 3{x}^{-8})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)\right)}{dx}\\=&\frac{(-9*2x + \frac{9*-2}{x^{3}} - \frac{9*-4}{x^{5}} + 1.68 - 3 + 0)*0.5}{(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)^{\frac{1}{2}}}\\=&\frac{-9x}{(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)^{\frac{1}{2}}} - \frac{9}{(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)^{\frac{1}{2}}x^{3}} + \frac{18}{(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)^{\frac{1}{2}}x^{5}} + \frac{0.84}{(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)^{\frac{1}{2}}} - \frac{1.5}{(-9x^{2} + \frac{9}{x^{2}} - \frac{9}{x^{4}} + 1.68x - 3x + 2)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return