There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(2 + 2{x}^{2} - 9{x}^{-2} + 9{x}^{-4})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(2x^{2} - \frac{9}{x^{2}} + \frac{9}{x^{4}} + 2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(2x^{2} - \frac{9}{x^{2}} + \frac{9}{x^{4}} + 2)\right)}{dx}\\=&\frac{(2*2x - \frac{9*-2}{x^{3}} + \frac{9*-4}{x^{5}} + 0)*\frac{1}{2}}{(2x^{2} - \frac{9}{x^{2}} + \frac{9}{x^{4}} + 2)^{\frac{1}{2}}}\\=&\frac{2x}{(2x^{2} - \frac{9}{x^{2}} + \frac{9}{x^{4}} + 2)^{\frac{1}{2}}} + \frac{9}{(2x^{2} - \frac{9}{x^{2}} + \frac{9}{x^{4}} + 2)^{\frac{1}{2}}x^{3}} - \frac{18}{(2x^{2} - \frac{9}{x^{2}} + \frac{9}{x^{4}} + 2)^{\frac{1}{2}}x^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !