There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(36sin(x) + 50)}{(-30cos(x) + 30 + 50 * {35}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{36sin(x)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)} + \frac{50}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{36sin(x)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)} + \frac{50}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)}\right)}{dx}\\=&36(\frac{-(-30*-sin(x) + 0 + 0)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)^{2}})sin(x) + \frac{36cos(x)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)} + 50(\frac{-(-30*-sin(x) + 0 + 0)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)^{2}})\\=&\frac{-1080sin^{2}(x)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)^{2}} + \frac{36cos(x)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)} - \frac{1500sin(x)}{(-30cos(x) + 50*35^{\frac{1}{2}} + 30)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !