There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {2}^{x}{e}^{x} + {5}^{(3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{x}{e}^{x} + {5}^{(3x)}\right)}{dx}\\=&({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})){e}^{x} + {2}^{x}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + ({5}^{(3x)}((3)ln(5) + \frac{(3x)(0)}{(5)}))\\=&{2}^{x}{e}^{x}ln(2) + {e}^{x}{2}^{x} + 3 * {5}^{(3x)}ln(5)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !