There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{13225x}{({x}^{2} + 74x + 1369)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{13225x}{(x^{2} + 74x + 1369)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{13225x}{(x^{2} + 74x + 1369)}\right)}{dx}\\=&13225(\frac{-(2x + 74 + 0)}{(x^{2} + 74x + 1369)^{2}})x + \frac{13225}{(x^{2} + 74x + 1369)}\\=&\frac{-26450x^{2}}{(x^{2} + 74x + 1369)^{2}} - \frac{978650x}{(x^{2} + 74x + 1369)^{2}} + \frac{13225}{(x^{2} + 74x + 1369)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !